It is sometimes therapeutically necessary to breathe oxygen that has been pressurized from one and one-half to three times its state under normal atmospheric conditions. First used as a method of preventing deep-water divers from experiencing the agony of decompression sickness, commonly called the bends, this treatment has become common for people who need specific types of medical attention. Hyperbaric facility upgrading improves existing hospital systems for both patients and staff.
During treatment patients enter a special airtight room. Atmospheric gases are composed of 21% oxygen, and breathing a completely pure mixture provides benefits, but in a limited fashion. More significant outcomes can be experienced by delivering oxygen that is not only pure, but is also pressurized. The results can be specifically measured by the amount present in blood afterward.
This is important for a number of reasons. Blood vessels form and grow more rapidly, there is less deterioration of damaged tissue, stubborn wounds common in diabetics begin to heal, and the toxicity of certain poisons is reduced. Increasing the amount of oxygen within all body tissues decreases the chances of developing an obstruction due to gas bubbles, and speeds the recovery process. Treatments can be as few as two, or may be necessary daily.
The injuries and illnesses helped by this type of therapy not only include those related to decompression, but also involve stubborn sores common to diabetic people, injuries sustained by crushing, gangrene that threatens to spread, and the damage caused by cancer radiation treatments. People who have suffered extensive burns and grafting heal more rapidly, and carbon monoxide poisoning victims also benefit.
These kinds of facilities are housed primarily in hospitals, and usually consist of small rooms that hold one person, as well as larger chambers that can accommodate up to a dozen. Monoplace chambers are used for individual treatments, and are sometimes made of large, plastic tubes. Sessions may take up to an hour, during which time the patient reclines inside. Most side effects involve ear-popping caused by changing pressure.
The duration and amount of pressure depends primarily on the diagnosis, and positive patient response to previous oxygen therapy. Some may need to spend time in a chamber on a daily basis, while others may need fewer treatments. In most cases the procedure is considered extremely safe, but may cause problems for patients who have upper respiratory infections or other types of counter-indications.
Inspections takes place on a regular basis in order to review current operations. Often performed by medical consultants, the equipment itself is analyzed during operation, and staff members are asked to present existing issues or problems. Logs of necessary maintenance and operation often define where those improvements are necessary, and whether equipment needs replacing.
Both patients and hospital staff benefit from an upgrade to state-of-the art facilities. Not only do improvements increase the quality of care, but are very important to administrators responsible for cost controls. Consultants present solid statistics that detail projected financial savings as well as the amount of necessary investment in new equipment. The process is ongoing, and does not significantly interrupt treatment schedules.
During treatment patients enter a special airtight room. Atmospheric gases are composed of 21% oxygen, and breathing a completely pure mixture provides benefits, but in a limited fashion. More significant outcomes can be experienced by delivering oxygen that is not only pure, but is also pressurized. The results can be specifically measured by the amount present in blood afterward.
This is important for a number of reasons. Blood vessels form and grow more rapidly, there is less deterioration of damaged tissue, stubborn wounds common in diabetics begin to heal, and the toxicity of certain poisons is reduced. Increasing the amount of oxygen within all body tissues decreases the chances of developing an obstruction due to gas bubbles, and speeds the recovery process. Treatments can be as few as two, or may be necessary daily.
The injuries and illnesses helped by this type of therapy not only include those related to decompression, but also involve stubborn sores common to diabetic people, injuries sustained by crushing, gangrene that threatens to spread, and the damage caused by cancer radiation treatments. People who have suffered extensive burns and grafting heal more rapidly, and carbon monoxide poisoning victims also benefit.
These kinds of facilities are housed primarily in hospitals, and usually consist of small rooms that hold one person, as well as larger chambers that can accommodate up to a dozen. Monoplace chambers are used for individual treatments, and are sometimes made of large, plastic tubes. Sessions may take up to an hour, during which time the patient reclines inside. Most side effects involve ear-popping caused by changing pressure.
The duration and amount of pressure depends primarily on the diagnosis, and positive patient response to previous oxygen therapy. Some may need to spend time in a chamber on a daily basis, while others may need fewer treatments. In most cases the procedure is considered extremely safe, but may cause problems for patients who have upper respiratory infections or other types of counter-indications.
Inspections takes place on a regular basis in order to review current operations. Often performed by medical consultants, the equipment itself is analyzed during operation, and staff members are asked to present existing issues or problems. Logs of necessary maintenance and operation often define where those improvements are necessary, and whether equipment needs replacing.
Both patients and hospital staff benefit from an upgrade to state-of-the art facilities. Not only do improvements increase the quality of care, but are very important to administrators responsible for cost controls. Consultants present solid statistics that detail projected financial savings as well as the amount of necessary investment in new equipment. The process is ongoing, and does not significantly interrupt treatment schedules.
About the Author:
Read more about Hyperbaric Facility Upgrading Benefits Both Administrators And Patients.
0 comments:
Post a Comment